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We consider N-particle systems whose probability distributions obey the master 
equation. For  these systems, we derive the necessary and sufficient conditions under 
which the reduced n-particle (n < N) probabilities atso obey master equations and 
under which the Ursell functions decay to their equilibrium values faster than the 
probability distributions. These conditions impose restrictions on the form of the 
transition rate matrix and thus on the form of its eigenfunctions. We first consider 
systems in which the eigenfunctions of the N-particle transition rate matrix are com- 
pletely factorized and demonstrate that for such systems, the reduced probabilities 
obey master equations and the Ursell functions decay rapidly if certain additional 
conditions are imposed. As an example of such a system, we discuss a random walk 
of N pairwise interacting walkers. We then demonstrate that for systems whose 
N-particle transition matrix can be written as a sum of one-particle, two-particle, etc. 
contributions, and for which the reduced probabilities obey master equations, the 
reduced master equations become, in the thermodynamic limit, those for independent 
particles, which have been discussed by us previously. As an example of such N-particle 
systems, we discuss the relaxation of a gas of interacting harmonic oscillators. 
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1. i N T R O D U C T I O N  

In our previous papers in this series (1-~) (hereafter referred to as I, II, III, respectively), 
on the decay of correlations in various model systems, we have consistently found 
the relations 

P~(~;  t) -- p(O)(~) ~ pz(~; t) -- p~O)(~); n ~ 1 (1) 

R ~ ( ~ ;  t) - R(.~ ~) ~ [ e l ( ~ ;  t) - -  P~~ (2) 

where P~(,~'; t) stands for the n-particle distribution function at time t with dynamical 
variables c~ "~ ~ (~1, % ,..., c~); R~(c~'~; t) stands for the n-particle re laxants  z exempli- 
fied by the Ursell function U~ in papers I and II and the C-function in paper lII; 
P~ denotes the one-particle distribution function; and the superscript zero denotes the 
equilibrium value. Equation (1) describes the asymptotic relaxation of the n-particle 
distribution functions to their equilibrium value p(O) and Eq. (2) describes the asymp- 
totic relaxation of the n,particle relaxant to its equilibrium value R(~ ~ Equation (2) 
implies the important result that P~(t) ,  n > 1, relaxes to a func t iona l  of lower-order 
distribution functions [P,~_~(t), P~_~(t) ..... Pl(t)] as [P~(~;t)--e~(~ These 
results hold for such diverse systems as noninteracting, initially correlated particles 
in contact with a heat bath, (1) an infinite chain of coupled harmonic oscillators/z) 
and the relaxation of spins in Glauber's (4) one-dimensional Ising model. (~) It is 
evident that there must be an underlying physical basis for these identical results on 
the decay of correlations. 

In this paper, we study the general conditions under which the n-particle distri- 
bution functions and the Ursell functions will be of the form shown in Eqs. (1) and (2). 
We limit our consideration here to many-body systems whose time development is 
governed by a master equation as exemplified in papers I and III. 

In Section 2, we develop eigenfunction expansions for the total probability 
PN(t) and for the reduced probabilities P,~(t), n ~ 1,..., N -- 1. We derive the necessary 
and sufficient conditions on the form of the eigenfunctions and the master operator Au 
under which the reduced probabilities obey master equations and under which the 
Ursell functions relax asymptotically to their equilibrium values faster than the reduced 
probability distributions relax to their equilibrium values. 

In Section 3, we consider systems for which the eigenfunctions of AN are com- 
pletely factorized into single-particle functions. We show that for such systems, the 
reduced probabilities obey master equations and the Ursell functions decay more 
rapidly than the reduced probabilities. 

In Section 4, we consider a model of N interacting random walkers as an example 
of a system for which the eigenfunctions of AN are completely factorized. For the 
particular random walk chosen, in which the only transitions are those in which one 
particle takes a step to the right while another particle takes a step to the left, Ux_~ 
decays asymptotically at the same rate as U~. In the thermodynamic limit, the reduced 

3 The term "relaxant" has been suggested to us by Prof. Michael E. Fisher as a generic term for 
functions which are useful in studying the decay of correlations. 
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master equations reduce to those for independent particles, and the asymptotic 
relaxation of U~ and P~ is again that found in Paper I, and given by Eqs. (1) and (2). 

In Section 5, we generalize the results of Section 4 and demonstrate that for 
systems for which AN can be written as a sum of one-particle, two-particle, etc. 
contributions, and for which the reduced probabilities obey master equations, the 
reduced master equations become, in thermodynamic limit, those for independent 
particles. As an example, we consider in some detail a system of N interacting har- 
monic oscillators which undergo transitions as a result of two-body resonant collisions. 

2. E I G E N F U N C T I O N  E X P A N S I O N S  

We consider a system containing N particles and with a time-dependent multi- 
variate probability Ps(aN; t), where a N ~  (a l ,  a 2 ..... aN), with ai some property 
or set of properties of the ith particle. We assume that the time dependence of PN is 
governed by the master equation 

8PN(aZ~; t)/St = ~ AN(a N, 7 N) PN(TN; t) (3) 
,~N 

where the transition rate AN(c~ N, 7 N) is related to the N-particle "gain and loss" 
transition rates BN(c~ N, 7 N) by 

AN(C, N, 7 n) = Bn(a N, 7 N) -- 8~N ~N ~ Bz,T(Ix ~, a N) (4) 
l~ N 

Here and in the equations to follow, 8~NTU is the Kronecker delta for discrete variables 
and the Dirac delta function for continuum variables. We shall write the solution to 
Eq. (3) in terms of eigenfunction expansions and investigate under what conditions 
the reduced probabilities P.(an; t), n = 1 ..... N -- 1, obey master equations of the 
form 

~e,(~"; t)/~t = Z A , (  ~''~, Y ~ P,(7"; t) (5) 
3~n 

We shall also investigate the conditions under which the Ursell functions m U~(c~"; t) 
decay to their equilibrium value faster than the P,~(a~; t) decay to their equilibrium 
values. 

Equation (3) can be written in operator notation as 

(~/et) PN(t) = ANPN(t) (6) 

with the formal solution 

P~v(t) = (exp ANt)" PN(0) (7) 

The right and left eigenfunctions RN,a~ and LN,a N respectively of AN obey the equations 

A N �9 R N , ; I  N = t N R N , , ~  N (8) 

LN,aN " A N = ~NLN,,IN (9) 

LN,aN " RN,aN' = 8aN,aN' (10) 
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where the AN are the eigenvalues, whose spectrum may be discrete and/or continuous. 
We consider here only systems for which the equilibrium distribution is unique, i.e., 
AN = 0 is a nondegenerate eigenvalue. The other eigenvalues, however, may be 
degenerate and the eigenfunctions should have a label denoting the state as well as 
the eigenvalue. We shall suppress this label for ease of notation. Equation (10) is 
understood to imply that the eigenfunctions for different states are orthogonal. The 
probability PN(t) can now be written 

eN(t) = ~ eaN~[LN.aN" PN(0)] Rx.~ N (11) 
hN 

where the symbol ~2 denotes the sum over the discrete spectrum and the integral over 
the continuous spectrum of eigenvalues. 

From detailed balance, 

where 

AN(oN, yN) p(NO)(TN ) = AN(vN, O~r) p(NO)(aN) (12) 

p~)(~ ' )  = p~(~'r oo) (13) 

is the equilibrium probability distribution, and from the fact that AN is a stochastic 
matrix, it follows that the eigenvalues 7N are real and nonpositive ~a) and that 

(o) N - 1  N LN.aN(aN) = [PN (o~ )1 RN,aN(C~ ) (14) 

If AN = 0 is part of the discrete spectrum, then 

p(O) = RN,o N (15) 

If  AN = 0 is part of the continuous spectrum, then 

p(o) = 0 (16) N 

and in Eqs. (12) and (14), RN,o should be used instead of P~). 
The reduced probabilities P~(~"; t), n = 1,..., N -- 1, for the n particles, il ..... i,~, 

are defined by 

P,,(c~"; t) = Z PN(cdr t) (17) 
ogN--n 

where the sum is over the variables of the N -- n other particles. It follows from 
Eq. (11) that 

P,(c~"; t) y" e aNtr[ = ,-~N.,,~" v~.(o)] y~ RN,~(~,'q (18) 
'~N ctN-n 

We now investigate the conditions under which p.(~n; t) is a solution to Eq. (5), i.e., 
when Pn(t) is given by 

P, ( t )  ----- (exp A , t ) .  P,(0) (19) 
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o r  

Pn(an; t) = ~ ea"t[Ln,a,, �9 Pn(0)] Rn,a,(a ") (20) 
an 

where Rn,a, and L,~,a, are the right and left eigenfunctions, respectively, and An the 
eigenvalues of A~. It is obvious that the A,~ must form a subset of the AN �9 

Clearly, Eq. (18) reduces to Eq. (20) if and only if, for each AN, either 

(i) ~, RN,aN(O~ N) ~ R~,aN(~ n) - -  0 (21) 
c~N--n 

o r  

(ii) [LN,aN " PN(0)] = [Ln,aN " Pn(0)] (22) 

Let us consider a AN for which Eq. (21) does not apply; for this AN, Eq. (22) must 
apply and we can write 

LN,aN(oz N) = Ln,~N(OC9 (23) 

since Eq. (22) must be true for all PN(0). This subset of Ax for which Eq. (23) applies 
is identical to the set of An. It then follows from Eqs. (14), (15), and (23) that 

RN,~N( O~ N) = [ R~,o( ~N) / Rn,o( O,n) ] " R.,~N( oe9 (24) 

The physical significance of the fact that the reduced distribution functions obey 
the master equation (5) is more readily understood from the condition that must be 
imposed on Ax.  This condition, which is of course equivalent to Eq. (23), is 

A n(a~, yn) = ~ AN(aN, yU) (25) 
aN-~ 

i.e., the transition rates for  the n-partiele subsystem must be independent o f  the initial 
states of  the other N -- n particles. Equation (25) imposes severe restrictions on the 
properties of AN but these conditions are not severe enough to determine uniquely its 
functional form. We discuss some sufficient conditions for Eq. (25) to hold in Section 3. 

We now investigate the conditions on the eigenfunctions of the master operator 
under which the Ursell functions relax to their equilibrium form faster than the proba- 
bility distributions relax to their equilibrium form. We start with the discussion of Us 
and then extend our considerations to Un. The two-particle Ursell function is defined 
by 

U2(cq , a2; t) = P2(az , %; t) -- Pl(Oq; t) Pl(a2; t) (26) 

with the property 

U2(o~1 , o~ 2 ; t )  = ~ U2(0~1 , o~ 2 ; t )  = 0 

a 1 a 2 

(27) 
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The time dependence of U~ is given explicitly by 

U~(oL~, ~2 ; t) = ~ (exp A~t)[Lrr,au �9 PN(0)] R2.aN(~, ~z) 
hN 

-- ~ {exp[(AN + At;') t]}[Ln.aN "PN(0)][L~aN' " PN(0)] 
~N,~N" 

• RI.~(-0 R~,.N'(~) (28) 

where we have used Eq. (18) and 

Z R-,~(~u) 
oeN--n 

(29) 

Equation (28) has the properties of Eq. (21) since 

Z R~.~,(~') = ~.N,o 
aN 

(30) 

which follows from Eqs. (10) and (14). If  no restrictions are imposed on the eigen- 
functions Ru,a u , the asymptotic decay of U2 is the same as the asymptotic decay of 
P2, which is governed by As ~ which is the highest nonzero eigenvalue for which 
R2,aN is nonzero. The asymptotic decay of P~ will be the same as the asymptotic decay 
of P2 if R~,a N is nonzero for the highest nonzero eigenvalue; if Rl,a N is zero for this 
eigenvalue, Pa will decay faster than P2 �9 

In order for U2 to decay faster than P2, it is necessary that the coefficient of the 
term in Eq. (28) containing the highest non zero eigenvalue be zero for all initial 
conditions. This will be the case if and only if 

R,.aNO(~, C~) = Ra.o(Cq) RZ.aNO(a,) q- Rl.aNo(al) Rl.o(C~2) (31) 

for each eigenstate of AN ~ 
The general expression for U ,  is given by 

U,(a'; t) ~ ~ (--1)~ (k -- 1)! P~l(ah ,..., c%1 ; t ) . . .  P,~(%~_~+~ ,..., a~, ; t )  

= ~e ( -  1)~ (k -- 1)! a~), ~ .... ~)  {exp[(A~) + "'" -? A~)) t]} 

/e 

• ]7[ [LN.a~)" PN(0)][R,~.a~)(c% ..... i.,)J (32) 

where the sum is over all partitions ~ of n particles in subgroups, k is the number of 
subgroups, and mi is the number of particles in the ith subgroup. The n-partMe Ursell 
function has the important property 

y~ u,,(o~-; t) = 0 (33) 
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where the subscript i denotes any of the n particles. An extension of the argument of 
the last paragraph yields the result that the U .... m = 2 ..... n, decay asymptotically 
faster than exp(AN~ if and only if 

" )  = 

5=1 

(34) 

Note that in this case, the time dependence of U~ is independent of whether or not the 
equilibrium probability distribution p~0) factorizes into single-particle functions. 

I f  P~(t), n = 1 .... , N -- 1, is a solution of the reduced master equation (5), so 
that Eqs. (21)-(24) apply, the Ursell functions will not decay any faster than the 
probabilities unless additional assumptions are made. Sufficient additional assump- 
tions are: 

(i) The equilibrium distribution is factorized into single-particle functions, i.e. 

P(~~ = I~[ P[~ (35) 
5=1 

(ii) The eigenfunction RI,aNo ("1) =/= 0 for each of the eigenstates of A~v ~ for one of 
the particles of the set n. 

Under these conditions, it follows from Eq. (24) that for each eigenstate of Aar ~ 

RI,2tNO(OLj) = O, j ~ i (36) 

and thus Eq. (24) is identical with Eq. (34). Therefore, Urn, m = 2,..., n, decays 
asymptotically faster than Pm, m = 1 ..... n. 

3. COMPLETELY FACTORIZED E I G E N F U N C T I O N S  

As we have shown in the last section, the specification of the necessary conditions 
for the fast decay of the Ursell functions is quite complicated. In this section, we shall 
consider some fairly stringent sufficient conditions for the fast decay of the Ursell 
functions and for the validity of the master equation for the reduced distribution 
functions, Eq. (5). 

We assume that all of the eigenfunctions of the master operator A N a r e  completely 
factorized into single-particle functions, i.e., 

N 

RN.aN(e~u) ~- I-I R~(c~5) (37) 
i = 1  

where we use the notation 

= , . . . ,  - =  ( 3 8 )  
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with AN(0,..., 0) = 0. Under these conditions, Eq. (11) can be written 

iV 

P~.(c~n; t) = ~ {exp[AN(V N) t]}[LN,aN " PN(0)] H R.flc~i) 
v N 4=1. 

where 

(39) 

N N 

= I ]  F[  (40) 
i ~ l  4=1  

Ro(a~ ) ~p~~ is the one-particle equilibrium distribution. Equation (40) and 
follows from Eq. (14). The orthonormality condition (10) is equivalent to 

(41) 

If we take v~ = 0, this yields 

R.((cq) = 80,.( (42) 

Equation (18) for the reduced probabilities P~ now becomes 

N 

P~(~;  t) = 2 {exp[AN(vN) t]}[LNaN" PN(0)] f i  R,~(~4) I-I 80.,~ (43) 
v N i = l  i = n + l  

where we have used Eq. (42). The sum over v ~  ,..., vN in Eq. (43) can be immediately 
performed to yield 

P , ( ~ ;  t) = 2 {exp[A-(v~) t]}[L,,a �9 P~(0)] f i  R~(~4) (44) 
v ~ i = l  

A.( , - )  - 0 ..... 0) 

where 

and 

(45) 

L,.a.(a ~) ~ f i  L.,(cq) (46) 
i ~ l  

Equation (44) is obviously of the form of Eq. (20), and thus the reduced probability Pn 
obeys the master equation (5). Therefore, the faetorization of the eigenfunctions 
RNA u as given in Eq. (37) is a sufficient condition for the validity of Eq. (5). 

We shall now investigate the properties of the Ursell functions when all the eigen- 
functions factorize. It follows from (44) and (46) that the terms in Eq. (44) for which 
vj = 0, j = 1 ..... n, are of the form P~_I(~-I;  t) p~01(~j). Thus, Eq. (44) can be re- 
written 

7/ 

+ Z '  {exp[A.(v") t]}[L.,~ �9 P.(0)] ]~ R.~(cq) (47) 
vn 4=1  
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where the sum over ~ is over all partitions of n particles into two subgroups where 
m goes from 1 to n. The notation 52~, implies the sum over all possible nonzero 
values of v, ..... v~. Substitution of Eq. (47) into Eq. (32) for U,~(t) yields 

U~(c~; t) = ~ (-- 1) k (k -- 1)! ~ '  exp{[)t,~l(v '~) q- "" @ A~,,0(v~)] t} 
v n 

k 

• l-[ [L~,a,~i" Pro,(0)] f l  R.~(~) (48) 
{=1 i=i 

where we have used the fact that factorized probabilities do not contribute to the 
Ursell functions. Note that because of the restriction on the sum over v ~, all the A,~ i 
that appear in Eq. (48) are nonzero. The asymptotic decay of U,~ is determined by the 
maximum value of Am1(v'~0 + ". + )t%(v'~@ vl .... , v,~ ~ 0. 

The stringent conditions on the eigenfunctions in Sections 2 and 3 for the rapid 
decay of the Ursell function Uu(t ) do not provide much physical insight. It would be 
preferable if these conditions could be stated in terms of properties of the operators 
AN and A~ of the N-particle and reduced n-particle master equations. We have been 
unable to do that in general. In Sections 4 and 5, we present and discuss some sufficient 

conditions on the AN and A,~ for the rapid decay of correlations. These conditions do 
yield physical insight into the types of interactions that lead to a rapid decay of 
correlations in stochastic processes governed by a master equation. 

4. R A N D O H  W A L K  W I T H  I N T E R A C T I O N S  

In this section, we consider N pairwise interacting random walkers on a finite 
one-dimensional lattice with periodic boundary conditions. The sites on the lattice 
might represent, for example, the internal states of gas particles. The steps of the ran- 
dom walkers on the lattice mirror the results of the binary collisions of the gas particles. 
The features of the problem that are of particular interest to us are the asymptotic 
decay of the Ursell functions and the structure of the transition rate matrix of the 
master equation in the thermodynamic limit. 

We consider N random walkers with binary interactions on a finite one-dimen- 
sional lattice with I sites and periodic boundary conditions. The position of particle i 
on the lattice is denotes by m~ = 1,..., l, with i = 1 .... , N. In our model, any site m 
can be occupied by more than one particle, subject to the restriction that the total 
number of particles equals N. We write the master equation of the N-particle system as 

N 

?PN(mN; t) /at  = (a / N)  ~ [Pu(ml  ..... ml  - -  1 ..... m j  q- 1 ..... m N ;  t) - -  PN(m~r t)] 

1 

(49) 

where ~ is a constant transition rate for the transitions rn~ --+ rn~ --  1 ; rnj -~ m; § 1. 
This equation describes a system with two-particle interactions such that one particle 
moves one step to the right while the other particle moves one step to the left while 
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N 
all other particles remain in the same state. In this model, Z~=~ rn~ is conserved in 
the sense that for all states that occur in Eq. (49), 

N 

rn~ = C + k l  (50) 
i = 1  

where C is a constant and k is an integer. 
The eigenfunctions of the master operator are 

where 

The eigenvalues are 

It is clear that 

RN,#(rnN ) ~- l -N exp[(27ri/1) vNm N] 

N 

= H R~j(mj), vj =- O, 1 ..... l - -  1 
j = l  

R ~ ( m j )  = 1-1 exp[(27ri/l) vjrnj] 

/g  

AN(V N) = (2~/N) ~ [ c o s ( 2 r r / l ) ( v i -  vj) - -  1] 
i < j  

1 

AN(~N)=0 

(51) 

(52) 

(53) 

if and only if 

v~ = v, k = 1,..., N (54) 

for all v~ = 0 ..... l - -  1. The zero eigenvalue AN is /-fold degenerate, which is a con- 
sequence of the conservation law expressed in Eq. (50). The highest nonzero eigenvalue 
Ax ~ for PN and UN is 

AN ~ ~ AN(v + 1, v, v,..., v) = ( 2 o ~ / N ) ( N -  1)[cos(2~v/l) - -  1] = - -A (55) 

The N-particle eigenfunctions in this model are completely factorized into one- 
particle functions and thus we are dealing with a special case of the systems discussed 
in Section 3. The reduced probabilities P~ obey master equations of the form of Eq. (5). 
The reduced eigenfunctions are given by 

&,~(m~) = [I Rv~(mj) (56) 
j = i  

and the reduced eigenvalues are 

A~(~) = AN(~", 0 ..... 0) 

1 

(57) 
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It should be noted that 

if and only if 

)t.(v ") = 0 ,  n = 1 ..... N - -  1 (58) 

and 

where 

Thus, the zero eigenvalue for all reduced probabilities is nondegenerate. 
The highest nonzero eigenvalue ;~o for P~(m ~) is 

A~~ ~ An(l, 0,..., 0) = (2c~/N)(N - -  1)[cos(27r//) --1] = --A (60) 

and thus all the reduced probabilities decay asymptotically to their equilibrium values 
a s  

P , ( m " ;  t) - -  P(~~ ~ c , e  -A~ (61) 

where en is a constant which depends on the initial conditions and where 

P(~ = 1-" (62) 

The expression for U~(m"; t) is given in Eq. (48). The highest nonzero eigenvalue 
appearing in this expression is 

A,(1, 1,..., 1) = [ 2 ~ n ( N -  n)/N][cos(ZTr/l) --1] 

--~ [(N -- n ) / ( N  - -  1)]nA (63) 

for n = 1 ..... N -- 1. Thus, U,(m";  t), n = 2,..., N -- 1, decays asymptotically to its 
equilibrium value IV0) = 0 as 

- - n  

U~(m"; t) ~ c , '  exp{ -- [n(N - -  n ) / ( N  - -  1)] A t }  (64) 

where c~' is a constant which depends on the initial condition. Note that U~(m; t) ==- 
Pa(m; t). 

From the form of As ~ in Eq. (55) it follows that the N-partMe functions Ps( t )  
and Us(t) decay asymptotically to their equilibrium forms as 

Ps( t )  -- p(0) (65) x s ~ Cs  e - A t  

U s ( t  ) - -  ~v NIT (0) ~ C s ' e  -A~ 

p(o)  _ I - N  (67) 

and P~) depends on the initial conditions because of the degenerate zero eigenvalue 
as given in Eq. (54). 

We now discuss the behavior of the Ursell functions U~(t) for finite N and in 
the thermodynamic limit as N - +  oe. For  N finite, Us_~(t) decays asymptotically at 

(66) 

vk = 0, k = 1, 2,..., n (59) 
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the same rate as U~(t), which follows immediately from Eq. (64). The fastest-decaying 
Ursell functions are those for which n ~_ N/2.  The slowest-decaying Ursell functions 
are those with n ~ N and n ~ N. The Ursell functions for n ~ N decay slowly owing 
to the conservation law given in Eq. (50). In the thermodynamic limit, the asymptotic 
decay of the reduced probabilities P~(t) is still given by Eq. (61), while the decay of 
the Ursell functions U~(t) is given by 

U~,~(t) ~ c,,'e -nA~ (68) 

which follows from Eq. (64). In the thermodynamic limit, our model system thus has 
the identical asymptotic behavior for P,(t) and U~(t) as previously found in I and II. 

The following question immediately arrises: Why does this model system with 
interactions behave, in the thermodynamic limit, in the same way as the independent- 
particle systems considered in I ? The operator A N in the master equation (49) can be 
written as 

A u ( m  N, q'~) = (o~/N) ~ ~,-~,q,3~j+z,q, l-[ 3~k,q - -  3,,~N qN (69) 

1 1 

The operator A~ for the reduced master equation is 

n 

1 1 

1 

(70) 

In the thermodynamic limit, A~ becomes 

A~( m~' q~) = ~ i [3mi-l.q~ + 3m~+l,qi 
i = l  

--23,~,,j fl a~,,k.~ (71) 
1 

Thus, in the thermodynamic limit, the n-particle transition rate An is the sum of single- 
particle transition rates and is identical in form to Eq. (2.15) of paper I for independent- 
particle dynamics. 

5. MASTER E Q U A T I O N  MODELS FOR I N T E R A C T I N G  GASES 

In this section, we consider systems containing N identical interacting particles 
in which the operator Au for an N-particle master equation can be written as a sum 
of one-particle, two-particle, etc. contributions. We show that in the thermodynamic 
limit as N--~ o% the reduced master equation operators A,~ can be written as a sum 
of one-particle terms as long as Eq. (25) applies. We illustrate our discussion by 
treating a system of N interacting harmonic oscillators. 
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We consider an N-particle transition rate matrix of the form 

N N 

A N (  aN'  7 N) = 2 A~I)(~ ; 7i1 H 3uk,Yk 
i=l k ~ i  

1 
N N 

i # j  k#i ,5 
1 1 

N N 
+ (1/6N2) Z A~a)(~r o~j, o~ ; ~ i ,  ~/j, ~l) H ~ak,'k "~- " "  (72) 

1 1 

where A~ 2), A~ ~1, etc. are symmetric when the particle indices are permuted. Here, 
A[ ~) is one-particle transition rate matrix which has the property 

A~)(~ ;7~1 --~ 0 (73) 
ai 

A~ 2) is a two-particle transition rate matrix with the property 

2 A~2)(c~, c~; ; ~ ,  :e~) = 0 (74) 
~,~ 

A~ ~) is a three-particle transition rate matrix with the property 

2 A~a)(cQ ' c~j, o~ t ; ~ i ,  'Y~, ~zt  = 0 (75) 
exi,o~j,o~ l 

etc. The form of A N in gq. (72) implies that the systems under consideration can be 
described in terms of one-particle, two-particle, three-particle, etc. interactions as 
is the case, for instance, for weakly interacting systems with short-range forces. The 
factors N -(x-~) in front of the sums take account of the frequencies of /-particle 
collisions. Thus, the A~ are independent of N. We assume that for the operator AN 
given in Eq. (72), the condition (25) holds in the thermodynamic limit as N---~ oo. 
In this case, A~ will be given by 

i=l k ~ i  
1 

where 
A1 =- A Ill + A 121 -5 A t3~ + "" (77) 

and where 

A(1)(c~ ;~'~1 = A[1)(c~ ; 7~) (78/ 
iV 

A(2)(~i, 7i) • l ira(l /N) Z Z A~2)(c%, c~j ; 71, T~) (79) 
5=1 aj 

N 

A(a)(ai,  ~i) = tim(l/N2) Z Z Z A~a)( ~ cxj, cq ; 7 i ,  7~, 7~) (80) 
~,l=l aj a t 

i#]@t 
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etc. In writing Eqs. (79) and (80), we have assumed that the two-particle, three- 
particle, etc. contributions to AN obey the condition (25) in the thermodynamic 
limit. In many systems, ~ j  A(2Z)(c~, ~j; y i ,  YJ) will be independent of yj; in other 
systems, as we shall see below, it is necessary to take the sum overj to obtain a quantity 
independent of ~ in thermodynamic limit. 

Note that if A~ has the form given in Eq. (76), the results given in I for indepen- 
dent-particle systems will again apply. 

We now consider the example of a gas of interacting harmonic oscillators which 
exchange only vibrational energy. The N-particle master equation has the form (6) 

6PN(rnN; t)/et = ~ AN(m N, qN) pN(qN; t) 
qN 

N 
~- (a /N)  ~, [mi(m j -~ 1)  e N ( m l  , . . . ,  mi  - -  l , . . . ,  m j  -~- 1 , . . . ,  m N ; t )  

1 

--  (mi + 1) m~eN(mN; t)] (81) 

where a is a rate coefficient and where mi = 0, 1,..., with i ~ 1,..., N, denotes the 
states of the ith oscillator with energy E ( m i ) =  mihv. The dimensionless mean 
vibrational energy per particle E is given by 

N 
E -= (l/Uhv) ~ E(mi) = (l/N) Z rnl (82) 

Clearly, this mean energy is a constant which is conserved during the relaxation pro- 
cess. In order for the relaxation process to take place on the constant-energy shell 
with energy, ArE, it is necessary to choose initial conditions such that PN(mN; 0) is 
nonzero only when 5Z~ mi = Ne. The N-particle master operator has the form 

N N 
AN(raN; qN) = (1/2N) Z A~2)(mi, mj ; qi, qj) IF] 3~,~ (83) 

i :# j k = l  
1 k r  

where 

A~)(mi , mj ; qi , qJ) = a{mi(mj + 1) 8m,_l,q,3mj+~,qj + (mi + 1) mj3,,~+lm3mj_l,~ 

- -  [(mi + 1)mj + mi(mj § 1)] 3~,~fi~.q~} (84) 

Equation (83) is clearly a special case of Eq. (72). The two-particle transition rate 
matrix A~ 2) has the properties 

C(mi ; qi , qJ) ~ Z A~2)( mi , mj ; qi , qJ) 
qnj 

= aqj[mi3~i_l,qi + (m~ + 1) 3~+1,q, -- (2mi + 1) 3~,q~] 

-k, a[(mi + 1) 8.~,+a,q, --  mi3~,.q,] (85) 
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and 

N 

A(2)(mr ; qi) = luim(1/N) ~, C(mi ; qi , qj) 
j=l;j@l 

= a[~mi~_~.q~ + (~ + l)(m~ + I) 8~+~,~ - (2~mi + ~ + m3 ~.~,~] 

(86) 

where the limit N--~ 0o is taken keeping r fixed. Equation (86) leads to an A (2) of the 
form given in Eq. (79). From the relation given in Eq. (77), it then follows that AN 
is of the form of Eq. (76) with the n-particle master operator given as a sum of one- 
particle transition rates. The results of paper I are thus directly applicable to the 
system of interacting oscillators. The eigenfunctions and eigenvalues of this one- 
particle transition rate matrix AI(~,  )'1) can be found in the paper by Montroll and 
Shuler.(7) 

The results of this section can be briefly summarized as follows. If  the transition 
rate matrix AN for the N-particle master equation can be written in the form of 
Eq. (72), which is the case, for instance, for systems with weak interactions and 
short-range forces, and if the operator AN is of the form given in Eq. (25), i.e., if the 
N-particle master equation reduces to an n-particle master equation by summation 
over the other N -- n particles, then in the thermodynamic limit, AN reduces to a sum 
of one-particle transition rates A~. This implies that for all such systems, 

u . ( t )  - u ( .  ~ ~ [p~( t )  - p~o) ] .  

P , ~ ( t )  - p ( o )  ~ [ e l ( t )  - p~O)] 

(87) 

(88) 

These results are identical with those obtained by us in I for systems described 
by independent-particle dynamics which are also characterized by one-particle 
transition rates A1. 
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